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AbstracL In this paper, we show that the udelic limit of the quantum “nutator between 
openton gives a suitable generaliwtion of lhe Poisson-bracket on p-adic phase space 

1. Introduction 

The first quantum model covering the field of p-adic number Q,, was considered by 
Beltrametti and Cassinelli [l], who investigated the problem of choosing a number field 
in quantum theories from the position of quantum logic. Subsequently, great interest in 
p-adic physics has appeared in research into string theory [2-7]. 

The main purpose of these p-adic string investigations was to describe the spacetime 
on Planck distances with the aid of the field of p-adic numbers Qp in accordance with 
an old idea concerning violation of Archimedean axioms on Planck distances. The non- 
Archimedean number field Q,, can be a good mathematical tool for describing such a 
physical model. In these articles, the physical interpretation of such high-level models as 
p-adic strings became problematic and, hence, simpler models, such as p-adic quantum 
mechanics and field theory, were also investigated [8-121. 

There are two main approaches to p-adic quantization. The first is based on complex- 
valued wavefunctions of the p-adic argument $ : Q: -+ C .  

The second approach is based on wavefunctions of p-adic arguments, which assume 
values in some extensions of Q,, such as quadratic extensions or the field of complex p-adic 
numbers C,,; for the definition of this field see, for example, [13]. 

We are interested in the first approach by regarding the prime number p as a variable. 
We consider, in some sense, an adelic approach in which we first propose a quantization 
scheme by means of the calculus of pseudo-differential operators; this technique, which 
gives rise to the same results as the standard quantization technique when applied to real- 
number theory, is able to provide a procedure that we can also use in the p-adic approach. 

Subsequently, we shall study the problem of defining derivatives on the functional 
space of Schwan-Bruath (SE) maps from Qr to C .  This problem, which does not admit 
a direct solution, has already been confronted by Vladimirov in [ 141 where a definition of 
a derivative map was given. Here we propose a different definition of the derivative map 
by means of which we shall construct a generalized form of the classical Poisson bracket. 

’ This work was carried out under the auspices of the GNFM of CNR of the research programme ‘Metodi 
geomevici in Relativita e Teoria dei campi’ of MURST and of the Russian Fundamental Foundation project no 
93-011-161 14. 
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Finally, by considering large p (that is by performing the adelic limit p + CO) we shall 
show that the most relevant part of the action of a quantum commutator (more precisely, the 
first term of the expansion in I/p) is given by the Poisson bracket we have just consbucted. 

The correspondence principle for standard quantum mechanics with a real argument and 
complex-valued wavefunctions can be written i n  the following form: 

If. sl(Q, P) = ih{f,  gKQ, J') + ( 1 )  

where 

denotes the Poisson bracket on the phase space R2 where canonical coordinates (Q. P) are 
used and [f, g](Q, P) is the symbol of the operator o(T1) deletes term of 
order larger than one in A. 

This equation is considered to be the deformation law of commutator [ f, g] with respect 
to the small parameter h. The first-order coefficient in h is the Poisson bracket. Equality (1) 
can be rewitten in the form 

j - j . 

1 
- -[f, gl = I f ,  g] + o(h') E > 0 h -+ 0. (3) h 

Hence, the Poisson bracket {f,g) is the limit of fraction -i[f,g]/h when the 
deformation parameter h appoaches zero. We prefer to consider h in ( I )  as a deformation 
parameter not directly the Planck constant since this is a physical quantity and it is impossible 
to say that it approaches zero. 

We wish to obtain an analogue of deformation law ( I )  for quantum mechanics for 
complex-valued wavefunctions defined on the p-adic space. 

The main mathematical problem is the absence of a well defined derivative of the 
maps f :Qp  -+ C. Indeed, it was proved in [15] that the unique maps f:Q,, -+ C 
that are differentiable in the Frechet sense are constant. This is why no Schradinger-like 
representation was ever considered for p-adic quantum models; see [S] where Vladimirov 
and Volovich considered the Weyl representation to propose a quantization scheme. For 
this reason, we cannot construct a formula for the p-adic Poisson bracket in the usual way. 

2. Schwartz-Bruhat maps and Fourier transforms 

First, we give some details on p-adic numbers. 
Let Q be the field of rational numbers; by means of the standard norm, we can complete 

it by obtaining the field of rea1 numbers R. 
A different norm can be introduced on Q: this is the p-adic norm: by completing the 

field Q with this norm we get the field of p-adic numbers Q,,. 
A famous theorem from number theory [I31 tells us that the field Q can only be 

completed in these two ways. 
Let p be a prime positive integer number ( p  # 1); for any non-zero rational number 

x E Q, there is a unique way of writing x as x = p"m/n.  Here m and n are integers which 
are not divisible by p while v is an integer number. This equation is a trivial consequence 
of the decomposition of x into prime factors. 
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The p-adic norm is defined as 

and satisfies the strong triangular inequality 

This norm is non-Archimedean; see [13]. 
If we complete Q with respect to I . I,,, we obtain the field of p-adic numbers Q,. 
For the convenience of the reader, we recall that any p-adic number can be uniquely 

written in the form 
m 

x =  xnp‘ 
k=-n 

where the numbers xn are integers. xg = 0, 1. . , , , p - 1. Here, the integer number n is 
not fixed but is a function of x.  This expression is closely related to the usual decimal 
expression of a real number. 

Now we introduce the adele group. (See U141 and the book by Gel’fand et a l  [16] for 
details.) An infinite sequence 

x = (x,, x2,. . . , x,>. . .) (7) 

is called an d e l e  if x, E R, x, E Q, for all p = 2, , . . and all but a finite number of 
components are p-adic integers. The set A of all adeles is an additive group if the sums are 
performed component-wise. One can show that A is a locally compact topological space 
and the invariant (Haar) measure du on A is given by 

dx = dr,dx2.. .dx,. . . (8) 

where dx, is the Haar measure on Q,, satisfying the properties 

dx = 1 d(nx) = lal,dx. (9) 

Now we recall the definition of the space ’D of SB maps on A; they are the finite linear 
combinations of elementary maps of the form: 

$(x) = $m(Xm)Cz(X2), , . $p(xp), . . (10) 

where 
(i) $,(x,) is an infinitely differentiable function on R, 
(ii) $,,(xp) are, for all p,  finite and piecewise constant; and 
(iii) for all p. except a finite number, $,,(x,) = 1 when x p  is a p-adic integer and 

$,(x,) = 0 when x, is not a p-adic integer. 
We remark here that SB maps always vanish outside some balls 1x1, < p ” .  In particular, 

they are continuous and integrable. The Fourier transform can be defined from ’D + ZJ, 
To this end, we define the character of a p-adic number x as 

xD(x) = exp2ni {x) (1 1) 
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where 1x1 is the fracrionai parr of x given by the negative degree part of the canonical 
expansion of x .  The character has the following property: x(x + y) = x(x)x(y).  Now we 
define the character x on A 

R Cianci and A Khrennikov 

x(x) = exp(-2nixm)xz(xd,.  . xP(xp). . . (12) 

and define the Fourier transform of maps @ E 'D 

Further properties of the Fourier transforms for SB maps can be found in [14,16]. 

3. The quantization scheme 

Consider the space Q,, x Q,, an3 the couple (Q,  P) as variables on this space. We denote 
by 'D(Q;) the functional space of maps from Qp x Q,, to C which are of SB type for both 
their coordinates. 

Let f (Q. P) be a classical function on phase space: we assume that f E 'D(Q;). 
We now construct an operator f associated with f on the space of test functions S 

We put 
which is assumed to be the space of SB maps depending only on Q. 

Parameter 5 ,  in the classical framework, is related to the prpbg? of operator order: 
important values are 0. I ,  i; in this case we have the so-called Q P ,  PQ and the symmetric 
or Weyl quantizations, respectively. 

Let us return to the p-adic approach. The main result connected with this definition is 
as follows. 

Theorem 3.1. Consider two cases. 
(i) I f f  = f(Q),  then f-is multiplicative: f . @ ( e )  = f(Q)@(Q). 
(ii) I f f  = f ( P ) ,  then f is multiplicative in momentum representation: 

?.@(e) = /" dP$(P) f (P )x ( -QP) .  (17) 

The proof is straightforward; one has only to take into account the well known formula 
relating the Fourier transform of the identity map to the 6-Dirac distribution. 

In this theorem, one can also recognize that the classical function f plays the role of 
the symbol of the quantum operator f. Of course, this quantization procedure is the same 
as the standard procedure when f corresponds to a function f on phase space. Finally, we 
wish to note that the function f cannot be chosen to be a polynomial since it  has to take 
its values in C .  

0, 
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Let @ ( x )  be a test function of D and f a map in D(Qt) .  Then the following Lemma 3.1. 
formulae hold: 

where 

The proof is a direct calculation 

By using this formula, we consider two functions f and g in D(Q:) and compute the 
commutator [i ,  fl@(Q). 

Lemma 3.2. 
formulae hold: 

Let @ ( x )  be a test function of D and f, g maps in D(Q;). Then the following 

where the Fourier transform of the symbol of the commutator is 

FU(B, 4 = LpxQ, d p d u  ?(A u)H(B - CL, - U) 
x ~(-2spu + TW + sgu + p u ) [ x ( - j m )  - x(-up)]. (21) 

Finally, by using the inverse Fourier-transform formula, one gets the following theorem 
providing the expression for the commutator symbol. 

Theorem 3.2. The symbol of commutator [i, f] is 

X X(sC@’+ ?BW‘)X(-P(B + B ’ )  - Q(o~  + a’))[x(-B’~t) - x(-c~’B)]. 
(22) 

The next section will be devoted to the study of a possible generalization of Poisson 
brackets. 

4. On the definition of the Poisson brackets 

Consider a map f in D(QE) and write its inverse Fourier formula as 

Let us try to introduce a derivative map for functions in D(Qi) .  
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Defrnition 4.1. Let h be a map i n  D(Qp).  For any bounded map a:Q,, 4 C ,  the a- 
derivative of h with respect to i& variable x is defined as 

R Cianci and  A Khrerinikov 

We remark that, by setting a(x) = Ixlp, we get the definition given by Vladimirov in 

If we consider an infinite-component functional vector A = (a , ,  az, . . .), where the 
[ 141 of the differential operator D. 

maps a;: Q,, + C are bounded. we can generalize this formula to the gradient case 

The relevant case is obtained with the choice A(@) = {a,, U?, . : . I ,  in which case we have 

Now we consider two maps g, f in 'D(Q;) and compute 

where o denotes some map from Qp x Q p  + Q which has still to be determined. 

5. The asymptotic expansion of the quantum commutator in llp 

In this section we my to state a correspondence principle and at the same time evaluate the 
exact value of the Poisson-bracket expression. In other words, we shall determine the forms 
of the maps A and o of the previous section. 

Our idea is as follows. From a physical point of view, p-adic field theories could be 
useful for describing quantum phenomena at the order of scale of the Planck length &, (see 
[17] for a discussion). Indeed, the non-Archimedean structure of spacetime is connected 
with the non-localization of the gravitation measurement. 

When the scale order of the phenomena is l,, we think that p-adic numbers absolutely 
have to be used; on the other hand, for very large scale order, real numbers can be used. So 
we suspect that the deformation parameter in this theory is l lp  which has to be identified 
essentially with lh. 

Now we shall show that the commutator limit &, + 0 is the Poisson bracket by proving 
that the most relevant part of the expansion of the quantum commutator with respect to the 
deformation parameter I l p  is a possible definition of the Poisson bracket when the maps 
A and o are suitably chosen. 

Consider now the term 

x(.c@'+ .ck')[x(-aB') - x(-a'B)I (28) 
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in equation (22), assume for simplicity that r = 0 and expand this term with respect to l / p .  
To this end we notice that, for every p-adic y .  by writing y = E:, y i p i  (for some s) we 
have ( y )  = XI: xp' and, therefore, 

1 1 
b l  = -Y-l t -( 1 

P P2 " '  ' 

Now we calculate, for large p .  

x ( - a ~ ' )  = exp(2rri {-as'}) = 1 + ~~ri/p(-ap')-i + ,  , I .  (30) 
Now we write the first term in the expansion in l / p  of the commutator symbol in the form 
(5 = O )  

U " ' ( Q ,  P) = 2 n i / p  dadgda 'dB ' f ( a ,  B)g(a',,9') I :  
x x ( - P ( B  + B') - Q(a + ~'))[(-a@')-i - (-a'B)-il. (31) 

Now let us return to the Poisson-bracket definition. We fix the definition of the o map 
as follows. For any couple of members U ,  U E Qr,  we set U o U = - ( U I I ) - ~ .  In OUT specific 
case, we define 

A(a) o B(j3) -(-aB)-i. (32) 

Now we consider Poisson brackets. 

DeJTnition 5.1. Let f, g be two maps of 'D(Q:). The Poisson bracket is defined as follows: 

This definition can also be written in the form 

(g, f K Q .  P) = / dadBda'dS'J(a,B)H(a'.B') 
Q1. 

x x(-Q(a t a') - P(B + B'))f(-%4')-1 - (-a'B)-il. (34) 

Now we look at the expression for the symbol of the operator [2, f ]  in the G@ 
quantization scheme. In so doing, we realize that the following expression holds: 

U = Symb[g, f l  = 2ni/p(g.  f ]  t o ( l / p 2 )  (35) 

which is the promised analogue of the deformation of law ( I ) .  
We have therefore proved our main result: 

Theorem 5.1. The first term of the expansion in l / p  of the symbol of the quantum 
commutator (for the Qa quantization scheme) is the Poisson bracket of the previous 
definition 

(SymbE, h"' = 2ni/plg, fl .  (36) 

This theorem furnishes us with the classical limit of p-adic quantum mechanics and can 
also be interpreted as a suggestion for linking the parameter p of Qr to some scale factor 
like l h .  
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