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Abstract. In this paper, we show that the adelic limit of the quantum commutator between
operators gives a snitable generalization of the Poisson-bracket on p-adic phase space

1. Introduction

The first quantum model covering the field of p-adic number ¢}, was considered by
Beltrametti and Cassinelli [1], who investigated the problem of choosing a number field
in quantum theories from the position of quantum logic. Subsequently, great interest in
p-adic physics has appeared in research into string theory [2-7].

The main purpose of these p-adic string investigations was to describe the spacetime
on Planck distances with the aid of the field of p-adic numbers @}, in accordance with
an old idea concerning violation of Archimedean axioms on Planck distances. The non-
Archimedean number field ¢, can be a good mathematical tool for describing such a
physical model. In these articles, the physical interpretation of such high-level models as
p-adic strings became problematic and, hence, simpler models, such as p-adic quantum
mechanics and field theory, were also investigated [8-12].

There are two main approaches to p-adic quantization. The first is based on complex-
valued wavefunctions of the p-adic argument ¥ : Qp3 - C.

The second approach is based on wavefunctions of p-adic arguments, which assume
values in some extensions of §, such as quadratic extensions or the field of complex p-adic
numbers C; for the definition of this field see, for example, [13].

We are interested in the first approach by regarding the prime number p as a variable.
We consider, in some sense, an adelic approach in which we first propose a quantization
scheme by means of the calculus of pseudo-differential operators; this technique, which
gives rise to the same resuits as the standard quantization technique when applied to real-
number theory, is able to provide a procedure that we can also use in the p-adic approach.

Subsequently, we shall study the problem of defining derivatives on the functional
space of Schwartz—Bruath (s8) maps from @, to C. This problem, which does not admit
a direct solution, has already been confronted by Vladimirov in [14] where a definition of
a derivative map was given. Here we propose a different definition of the derivative map
by means of which we shall construct a generalized form of the classical Poisson bracket.

* This work was carried owt under the auspices of the GNFM of CNR of the research programme ‘Metodi
geometrici in Relativitd e Teoria dei campi” of MURST and of the Russian Fundamental Foundation project no
93-011-16114.
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Finally, by considering large p (that is by performing the adelic limit p — 20) we shall
show that the most relevant part of the action of a quantum commutator (more precisely, the
first term of the expansion in 1/p) is given by the Poisson bracket we have just constructed.

The correspondence principle for standard quantum mechanics with a real argument and
complex-valued wavefunctions can be written in the following form:

[f.elQ, P)=ir{f, gl Q, P) + o(h) n
where
_0f % _of s
V.&l=3530 " 300 @

denotes the Poisson bracket on the phase space 1> whe’ge canonical coordinates (Q, P) are
used and [f, g}(@, P) is the symbol of the operator f- £ ~ £+ f; o(h) deletes terms of
order larger than one in 7.

This equation is considered to be the deformation law of commutator [ f, g] with respect
to the small parameter 7. The first-order coefficient in % is the Poisson bracket. Equality (1)
can be rewritten in the form

—%Ef,g]={f,g}+o{h‘) €>0 B — 0. (3)

Hence, the Poisson bracket {f, g} is the limit of fraction —iff, gl/h when the
deformation parameter i appoaches zero. We prefer to consider t in (1) as a deformation
parameter not directly the Planck constant since this is a physical quantity and it is impossible
to say that it approaches zero.

We wish to obtain an analogue of deformation law (1) for quantum mechanics for
complex-valued wavefunctions defined on the p-adic space.

The main mathematical problem is the absence of a well defined derivative of the
maps f:Qp, — C. Indeed, it was proved in [15] that the unique maps f:Q, — C
that are differentiable in the Frechet sense are constant. This is why no Schrédinger-like
representation was ever considered for p-adic quantum models; see [8] where Vladimirov
and Volovich considered the Weyl representation to propose a quantization scheme. For
this reason, we cannot construct a formula for the p-adic Poisson bracket in the usual way.

2. Schwartz—Bruohat maps and Fourier transforms

First, we give some details on p-adic numbers.

Let @ be the field of rational numbers; by means of the standard norm, we can complete
it by obtaining the field of real numbers .

A different norm can be introduced on @: this is the p-adic norm; by completing the
field @ with this norm we get the field of p-adic numbers Q.

A famous theorem from number theory [13] tells us that the field € can only be
completed in these two ways.

Let p be a prime positive integer number (p # 1); for any non-zero rational number
x € @, there is a unique way of writing x as x = p”m/n. Here m and n are integers which
are not divisible by p while v is an integer number. This equation is a trivial consequence
of the decomposition of x into prime factors.
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The p-adic norm is defined as
|xlp = |p*m/nl, = p~" 0, =0 4)
and satisfies the strong triangular inequality

[x + ylp € max(|x],, [¥]p)- %)

This norm is non-Archimedean; see [13].
If we complete € with respect to | - [, we obtain the field of p-adic numbers .
For the convenience of the reader, we recall that any p-adic number can be uniquely
written in the form

x=3 xpt (6)

k==-n

where the numbers x; are integers, x, = 0,1,..., p — 1. Here, the integer number r is
not fixed but is a function of x. This expression is closely related to the usual decimal
expression of a real number.

Now we introduce the adele group. (See [14] and the book b} Gel'fand et al [16] for
details.) An infinite sequence

¥ = (Xoor X240 .oy Xpyvn ) {7

is called an adele if xoo € R, x, € @, for all p =2, ... and all but a finite number of
components are p-adic integers. The set A of all adeles is an additive group if the sums are
performed component-wise. One can show that A is a locally compact topological space
and the invariant (Haar) measure dx on A is given by

dx = dxpodxy...dx,. .. )

where dx,, is the Haar measure on @, satisfying the properties
f dx =1 d(ax) = la|,dx. )
[x]p=<1

Now we recall the definition of the space D of SB maps on A; they are the finite linear
combinations of elementary maps of the form:

P (x) = PoolXeo)Pa(x2) ... Pplxp) ... (10)

where

(i) P0(xe0) is an infinitely differentiable function on R,

(i) ¢, (xp) are, for all p, finite and piecewise constant; and

(iii} for all p, except a finite number, ¢,(x,) = 1 when x, is a p-adic integer and
¢p(xp) = 0 when x, is not a p-adic integer.

We remark here that SB maps always vanish outside some balls }x|, < p". In particular,
they are continuous and integrable. The Fourier transform can be defined from D — D.
To this end, we define the character of a p-adic number x as

Xp(x) =exp2mi{x} (11)
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where {x} is the fracrional pars of x given by the negative degree part of the canonical
expansion of x. The character has the following property: x(x 4+ ¥) = x () x(¥). Now we
define the character y on A

x(x) = exp(=2mixcc) xalxa) ... xplxp) - ... (12)

and define the Fourier transform of maps ¢ € D

Fox) = d(x) = fA Sx(x3) dy (3)

which is again a D map. The inversion formula holds:

6(x) = L $OIx(=xy) dy. (14)

fdysfdxm dxz...f dx, ... (15)
A R 0 Q,

Further properties of the Fourier transforms for $8 maps can be found in [14, 16].

Here

3. The gquantization scheme

Consider the space Q, % @, and the cduple (Q, P} as variables on this space. We denote
by D(sz) the functional space of maps from €}, x @2, to C which are of sB type for both
their coordinates.

Let £{Q, P) be a classical functjon on phase space; we assume that f € ’D(sz).

We now construct an operator f associated with f on the space of test functions &
which is assumed to be the space of 5B maps depending only on Q.

We put

(Fero) = fQ ° dQ'dP f((1 —1}Q + Q' —P)x(P(Q — 2Ne(Q). (16)
¥ p
Parameter 1, in the class:cal framework, is related to the problem of operator order:
important values are 0, 1, 1 3+ in this case we have the so-called QP, P ¢ and the symmetric
or Weyl quantizations, respectively.
Let us return io the p-adic approach. The main result connected with this definition is
as follows.

Theorem 3.1. Consider two cases.

@ If f = £(Q), then f‘is multiplicative: f - ¢(Q) = F(Q)¢(Q).

(ii) If £ = f(P), then f is multiplicative in momentum representation:

F-o@= [ aParrPxc-0p an
r

The proof is straightforward; one has only to take into account the well known formula
relating the Fourier transform of the identity map to the §-Dirac distribution.

In this theorem, one can also recognize that the classical function f plays the role of
the symbol of the quantum operator f Of course, this quantization procedure is the same
as the standard procedure when f corresponds to a function f on phase space. Finally, we
wish to note that the function f cannot be chosen to be a polynomial since it has to take
its values in C.
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Lemma 3.]. Let ¢{x) be a test function of D and f a map in D(Q?,). Then the following
formulae hold:

(Fo)Q) = f dudv Fu, v)x(—rQ — vT)P(Q + v) (18)
Qpxlp
where
(P v) = f 24P £(Q, P)(ug +vP). (19)

The proof is a direct calculation.

By using this formula, we consider two functions f and g in D(Qi) and compute the
commutator [g, f]q_‘;(Q).

Lemma 3.2, Let ¢(x) be a test function of D and f, g maps in D(Qg). Then the following
formulae hold:

Ue(Q) =12, Fle(Q) =f dedf x(=£Q — afr)(Q + ) FU(B, @) (20}

X Qp

where the Fourier transform of the symbol of the commutator is

FUB. o) = f v F, EE = =

* x(=2rpv + tpe 4ty + uv)[x(—ua) — x(—vB)l (21)

Finally, by using the inverse Fourier-transform formula, one gets the following theorem
providing the expression for the commutator symbol.

Theorem 3.2. The symbol of commutator [§, f ]is

U(Q, P) = qu dodpde’ dB’ Flew BE(, B)

x x(vaf' + tha)x (—P(B + B) — Qla + aNx(=B'a) — x(—~a'B)].
(22}

The next section will be devoted to the study of a possible generalization of Poisson
brackets.

4, On the definition of the Poisson brackets

Consider a map f in ’D(Q?,} and write its inverse Fourier formula as

£(0.P) = fq | dd8 f@ £)x(~0x(Pp). (23)

Let us try to introduce a derivative map for functions in D(Qf,).
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Deﬁnitio'n 4.1. Let h be a map in D(Q,). For any bounded map a:Q, — C, the a-
derivative of 2 with respect to its variable x is defined as

(g—i) Ef der a(o)i(e) ¥ (—xa). (24)

Q.

We remark that, by setting a(x) = {x|p, we get the definition given by Vladimirov in
[14] of the differential operator D.

If we consider an infinite-component functional vector A = (@, az,...), where the
maps a;: Q, — C are bounded, we can generalize this formula to the gradient case

dh ah _
(E)A = (a)a = -[Q,. dev a; (o )k (o) x (—xa). (25)

The relevant case is obtained with the choice A(a) = {ery, 2, ...}, in which case we have

(-3-’1) = fQ dar (o )R () x (—xar). (26)

ax

Now we consider two maps g, f in 'D{Qf,) and compute

Bg af Bf ag _ + Iy -y Il
(1)+ () () (2)- [ essarar s
x x{(~Qla+a) — P(B+ B0 () o (B) — () o (B (27)

where o denotes some map from Qp x @, — ¢ which has still to be determined.

5. The asymptotic expansion of the quantum commutator in 1/p

In this section we try to state a correspondence principle and at the same time evaluate the
exact value of the Poisson-bracket expression. In other words, we shall determine the forms
of the maps A and o of the previous section.

Our tdea is as follows. From a physical point of view, p-adic field theories could be
useful for describing quantum phenomena at the order of scale of the Planck length I, (see
[17] for a discussion). Indeed, the non-Archimedean structure of spacetime is connected
with the non-localization of the gravitation measurement.

When the scale order of the phenomena iz {;, we think that p-adic numbers absolutely
have to be used; on the other hand, for very large scale order, real numbers can be used. So
we suspect that the deformation parameter in this theory is 1/p which has to be identified
essentially with .

Now we shall show that the commutator limit {;, — 0 is the Poisson bracket by proving
that the most relevant part of the expansion of the quantum commutator with respect to the
deformation parameter 1/p is a possible definition of the Poisson bracket when the maps
A and o are suitably chosen.

Consider now the term

X (vaf’ + B} x (~af’) — x(—o/'B)] (28)
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in equation (22), assurne for simplicity that T = 0 and expand this term with respect to 1/ p.
To this end we notice that, for every p-adic y, by writing y = 3 o y: p' (for some s) we

have {y} = 37!, p' and, therefore,
1 1
{vl = ;V—r + F(---)- (29)

Now we calculate, for large p,
x(~af’y = expQni{—of’}) = 1 + 2i/p(—ef) + . (30)

Now we write the first term in the expansion in 1/p of the commutator symbol in the form
(=0

u(Q, Py = 27i/p fq dudpda’ af’ e HEE, B)

X x(—P(B + B)— Qe+ aN(—ap)- — (—a'B}_1]. (31

Now let us return to the Poisson-bracket definition. We fix the definition of the & map

as follows. For any couple of members #, v € @, we set w ov = —(uv)_;. In our specific
case, we define

A(@)o B(f) = —{(—aB)-1. (32)

Now we consider Poisson brackets.

Definition 5.1. Let f, g2 be two maps of D(Qf,). The Poisson bracket is defined as follows:

_ (o8N (¥N_(3 N, (%
0@ n=(35)<(55) - (36) *(55) -
This definition can also be written in the form

(8,110 P)= [ dwdpcel o Fo . B
X X(= Qe +a) = P+ B(=af)os — (~<'B)-1). e

Now we look at the expression for the symbol of the operator [2, f} in the éﬁ
quantization scheme. In so doing, we realize that the following expression holds:

U = Symbl#, f1 = 27i/plg. f} + o(1/p®) (35)

which is the promised analogue of the deformation of law (1).
We have therefore proved our main result:

Theorem 5./. The first term of the expansion in 1/p of the symbol of the quantum
commutator (for the QP quantization scheme) is the Poisson bracket of the previous
definition

(Symbig, f1)'" = 27i/plg, f). (36)

This theorem furnishes us with the classical limit of p-adic quantum mechanics and can
also be interpreted as a suggestion for linking the parameter p of @, to some scale factor
like f},.
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