Poisson brackets as the adelic limit of quantum commutators

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1994 J. Phys. A: Math. Gen. 277875
(http://iopscience.iop.org/0305-4470/27/23/030)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.68
The article was downloaded on 01/06/2010 at 23:19

Please note that terms and conditions apply.

Poisson brackets as the adelic limit of quantum commutators*

Roberto Cianci \dagger and Andrew Khrennikov \ddagger
\dagger Dipartimento di Matematica, Università di Genova, Via L B Alberti 4, 16132 Genova, Italy
\ddagger Department of High Mathematics, Moscow Institute of Electromic Engineering. 103498, Moscow, K-498. Russia

Received 1 July 1994, in final form 26 September 1994

Abstract

In this paper, we show that the adelic limit of the quantum commutator between operators gives a suitable generalization of the Poisson-bracket on p-adic phase space

1. Introduction

The first quantum model covering the field of p-adic number Q_{p} was considered by Beltrametti and Cassinelli [1], who investigated the problem of choosing a number field in quantum theories from the position of quantum logic. Subsequently, great interest in p-adic physics has appeared in research into string theory [2-7].

The main purpose of these p-adic string investigations was to describe the spacetime on Planck distances with the aid of the field of p-adic numbers Q_{p} in accordance with an old idea concerning violation of Archimedean axioms on Planck distances. The nonArchimedean number field Q_{p} can be a good mathematical tool for describing such a physical model. In these articles, the physical interpretation of such high-level models as p-adic strings became problematic and, hence, simpler models, such as p-adic quantum mechanics and field theory, were also investigated [8-12].

There are two main approaches to p-adic quantization. The first is based on complexvalued wavefunctions of the p-adic argument $\psi: Q_{p}{ }^{3} \rightarrow C$.

The second approach is based on wavefunctions of p-adic arguments, which assume values in some extensions of Q_{p} such as quadratic extensions or the field of complex p-adic numbers C_{p}; for the definition of this field see, for example, [13].

We are interested in the first approach by regarding the prime number p as a variable. We consider, in some sense, an adelic approach in which we first propose a quantization scheme by means of the calculus of pseudo-differential operators; this technique, which gives rise to the same results as the standard quantization technique when applied to realnumber theory, is able to provide a procedure that we can also use in the p-adic approach.

Subsequently, we shall study the problem of defining derivatives on the functional space of Schwartz-Bruath (SB) maps from Q_{p} to C. This problem, which does not admit a direct solution, has already been confronted by Vladimirov in [14] where a definition of a derivative map was given. Here we propose a different definition of the derivative map by means of which we shall construct a generalized form of the classical Poisson bracket.

[^0]Finally, by considering large p (that is by performing the adelic limit $p \rightarrow \infty$) we shall show that the most relevant part of the action of a quantum commutator (more precisely, the first term of the expansion in $1 / p$) is given by the Poisson bracket we have just constructed.

The correspondence principle for standard quantum mechanics with a real argument and complex-valued wavefunctions can be written in the following form:

$$
\begin{equation*}
[f, g](Q, P)=\mathrm{i} \hbar\{f, g\}(Q, P)+\mathrm{o}(\hbar) \tag{1}
\end{equation*}
$$

where

$$
\begin{equation*}
\{f, g\}=\frac{\partial f}{\partial P} \frac{\partial g}{\partial Q}-\frac{\partial f}{\partial Q} \frac{\partial g}{\partial P} \tag{2}
\end{equation*}
$$

denotes the Poisson bracket on the phase space R^{2} where canonical coordinates (Q, P) are used and $[f, g](Q, P)$ is the symbol of the operator $\hat{f} \cdot \hat{g}-\hat{g} \cdot \hat{f} ; o(h)$ deletes terms of order larger than one in h.

This equation is considered to be the deformation law of commutator $[f, g$] with respect to the small parameter \hbar. The first-order coefficient in \hbar is the Poisson bracket. Equality (1) can be rewritten in the form

$$
\begin{equation*}
-\frac{\mathrm{i}}{\hbar}[f, g]=\{f, g\}+o\left(h^{\epsilon}\right) \quad \epsilon>0 \quad \hbar \rightarrow 0 \tag{3}
\end{equation*}
$$

Hence, the Poisson bracket $\{f, g\}$ is the limit of fraction $-\mathrm{i}[f, g] / \hbar$ when the deformation parameter \hbar appoaches zero. We prefer to consider \hbar in (1) as a deformation parameter not directly the Planck constant since this is a physical quantity and it is impossible to say that it approaches zero.

We wish to obtain an analogue of deformation law (1) for quantum mechanics for complex-valued wavefunctions defined on the p-adic space.

The main mathematical problem is the absence of a well defined derivative of the maps $f: Q_{p} \rightarrow C$. Indeed, it was proved in [15] that the unique maps $f: Q_{p} \rightarrow C$ that are differentiable in the Frechet sense are constant. This is why no Schrödinger-like representation was ever considered for p-adic quantum models; see [8] where Vladimirov and Volovich considered the Weyl representation to propose a quantization scheme. For this reason, we cannot construct a formula for the p-adic Poisson bracket in the usual way.

2. Schwartz-Bruhat maps and Fourier transforms

First, we give some details on p-adic numbers.
Let Q be the field of rational numbers; by means of the standard norm, we can complete it by obtaining the field of real numbers R.

A different norm can be introduced on Q : this is the p-adic norm; by completing the field Q with this norm we get the field of p-adic numbers Q_{p}.

A famous theorem from number theory [13] tells us that the field Q can only be completed in these two ways.

Let p be a prime positive integer number ($p \neq 1$); for any non-zero rational number $x \in Q$, there is a unique way of writing x as $x=p^{\nu} m / n$. Here m and n are integers which are not divisible by p while ν is an integer number. This equation is a trivial consequence of the decomposition of x into prime factors.

The p-adic norm is defined as

$$
\begin{equation*}
|x|_{p}=\left|p^{\nu} m / n\right|_{p}=p^{-\nu} \quad|0|_{p}=0 \tag{4}
\end{equation*}
$$

and satisfies the strong triangular inequality

$$
\begin{equation*}
|x+y|_{p} \leqslant \max \left(|x|_{p},|y|_{p}\right) . \tag{5}
\end{equation*}
$$

This norm is non-Archimedean; see [13].
If we complete Q with respect to $|\cdot|_{p}$, we obtain the field of p-adic numbers Q_{p}.
For the convenience of the reader, we recall that any p-adic number can be uniquely written in the form

$$
\begin{equation*}
x=\sum_{k=-n}^{\infty} x_{k} p^{k} \tag{6}
\end{equation*}
$$

where the numbers x_{k} are integers, $x_{k}=0,1, \ldots, p-1$. Here, the integer number n is not fixed but is a function of x. This expression is closely related to the usual decimal expression of a real number.

Now we introduce the adele group. (See [14] and the book by Gel'fand et al [16] for details.) An infinite sequence

$$
\begin{equation*}
x=\left(x_{\infty}, x_{2}, \ldots, x_{p}, \ldots\right) \tag{7}
\end{equation*}
$$

is called an adele if $x_{\infty} \in R, x_{p} \in Q_{p}$ for all $p=2, \ldots$ and all but a finite number of components are p-adic integers. The set A of all adeles is an additive group if the sums are performed component-wise. One can show that A is a locally compact topological space and the invariant (Haar) measure $\mathrm{d} x$ on A is given by

$$
\begin{equation*}
\mathrm{d} x=\mathrm{d} x_{\infty} \mathrm{d} x_{2} \ldots \mathrm{~d} x_{p} \ldots \tag{8}
\end{equation*}
$$

where $\mathrm{d} x_{p}$ is the Haar measure on Q_{p} satisfying the properties

$$
\begin{equation*}
\int_{|x|_{p} \leqslant 1} \mathrm{~d} x=1 \quad \mathrm{~d}(a x)=|a|_{p} \mathrm{~d} x \tag{9}
\end{equation*}
$$

Now we recall the definition of the space \mathcal{D} of SB maps on A; they are the finite linear combinations of elementary maps of the form:

$$
\begin{equation*}
\phi(x)=\phi_{\infty}\left(x_{\infty}\right) \phi_{2}\left(x_{2}\right) \ldots \phi_{p}\left(x_{p}\right) \ldots \tag{10}
\end{equation*}
$$

where
(i) $\phi_{\infty}\left(x_{\infty}\right)$ is an infinitely differentiable function on R;
(ii) $\phi_{p}\left(x_{p}\right)$ are, for all p, finite and piecewise constant; and
(iii) for all p, except a finite number, $\phi_{p}\left(x_{p}\right)=1$ when x_{p} is a p-adic integer and $\phi_{p}\left(x_{p}\right)=0$ when x_{p} is not a p-adic integer.

We remark here that SB maps always vanish outside some balls $|x|_{p} \leqslant p^{n}$. In particular, they are continuous and integrable. The Fourier transform can be defined from $\mathcal{D} \rightarrow \mathcal{D}$. To this end, we define the character of a p-adic number x as

$$
\begin{equation*}
\chi_{p}(x)=\exp 2 \pi \mathrm{i}\{x\} \tag{l1}
\end{equation*}
$$

where $\{x\}$ is the fractional part of x given by the negative degree part of the canonical expansion of x. The character has the following property: $\chi(x+y)=\chi(x) \chi(y)$. Now we define the character X on A

$$
\begin{equation*}
\chi(x)=\exp \left(-2 \pi \mathrm{i} x_{\infty}\right) \chi_{2}\left(x_{2}\right) \cdots \chi_{p}\left(x_{p}\right) \ldots \tag{12}
\end{equation*}
$$

and define the Fourier transform of maps $\phi \in \mathcal{D}$

$$
\begin{equation*}
\mathcal{F} \phi(x)=\tilde{\phi}(x)=\int_{A} \phi(y) \chi(x y) \mathrm{d} y \tag{13}
\end{equation*}
$$

which is again a \mathcal{D} map. The inversion formula holds:

$$
\begin{equation*}
\phi(x)=\int_{A} \tilde{\phi}(y) \chi(-x y) \mathrm{d} y \tag{14}
\end{equation*}
$$

Here

$$
\begin{equation*}
\int_{A} \mathrm{~d} y \equiv \int_{R} \mathrm{~d} x_{\infty} \int_{Q_{2}} \mathrm{~d} x_{2} \ldots \int_{Q_{p}} \mathrm{~d} x_{p} \ldots \tag{15}
\end{equation*}
$$

Further properties of the Fourier transforms for SB maps can be found in [14, 16].

3. The quantization scheme

Consider the space $Q_{p} \times Q_{p}$ and the couple (Q, P) as variables on this space. We denote by $\mathcal{D}\left(Q_{p}^{2}\right)$ the functional space of maps from $Q_{p} \times Q_{p}$ to C which are of SB type for both their coordinates.

Let $f(Q, P)$ be a classical function on phase space; we assume that $f \in \mathcal{D}\left(Q_{p}{ }^{2}\right)$.
We now construct an operator \hat{f} associated with f on the space of test functions \mathcal{S} which is assumed to be the space of SB maps depending only on Q.

We put
$(\hat{f} \phi)(Q)=\int_{Q_{r} \times Q_{r}} \mathrm{~d} Q^{\prime} \mathrm{d} P^{\prime} f\left((1-\tau) Q+\tau Q^{\prime},-P^{\prime}\right) \chi\left(P^{\prime}\left(Q-Q^{\prime}\right)\right) \phi\left(Q^{\prime}\right)$.
Parameter τ, in the classical framework, is related to the problem of operator order: important values are $0,1, \frac{1}{2}$; in this case we have the so-called $\hat{Q} \hat{P}, \hat{P} \hat{Q}$ and the symmetric or Weyl quantizations, respectively.

Let us return to the p-adic approach. The main result connected with this definition is as follows.

Theorem 3.1. Consider two cases.
(i) If $f=f(Q)$, then \hat{f} is multiplicative: $\hat{f} \cdot \phi(Q)=f(Q) \phi(Q)$.
(ii) If $f=f(P)$, then \hat{f} is multiplicative in momentum representation:

$$
\begin{equation*}
\hat{f} \cdot \phi(Q)=\int_{Q_{r}} \mathrm{~d} P \tilde{\phi}(P) f(P) \times(-Q P) \tag{17}
\end{equation*}
$$

The proof is straightforward; one has only to take into account the well known formula relating the Fourier transform of the identity map to the δ-Dirac distribution.

In this theorem, one can also recognize that the classical function f plays the role of the symbol of the quantum operator \hat{f}. Of course, this quantization procedure is the same as the standard procedure when \hat{f} corresponds to a function f on phase space. Finally, we wish to note that the function f cannot be chosen to be a polynomial since it has to take its values in C.

Lemma 3.1. Let $\phi(x)$ be a test function of \mathcal{D} and f a map in $\mathcal{D}\left(Q_{p}^{2}\right)$. Then the following formulae hold:

$$
\begin{equation*}
(\hat{f} \phi)(Q)=\int_{Q_{r} \times Q_{p}} \mathrm{~d} \mu \mathrm{~d} \nu \tilde{f}(\mu, v) \chi(-\mu Q-\mu \nu \tau) \phi(Q+\nu) \tag{18}
\end{equation*}
$$

where

$$
\begin{equation*}
(\tilde{f})(\mu, \nu)=\int_{Q_{P} \times Q_{r}} \mathrm{~d} Q \mathrm{~d} P f(Q, P) \chi(\mu Q+v P) \tag{19}
\end{equation*}
$$

The proof is a direct calculation.
By using this formula, we consider two functions f and g in $\mathcal{D}\left(Q_{p}^{2}\right)$ and compute the commutator $[\hat{g}, \hat{f}] \phi(Q)$.

Lemma 3.2. Let $\phi(x)$ be a test function of \mathcal{D} and f, g maps in $\mathcal{D}\left(Q_{p}^{2}\right)$. Then the following formulae hold:

$$
\begin{equation*}
\hat{U} \phi(Q) \equiv[\hat{g}, \hat{f}] \phi(Q)=\int_{Q_{r} \times Q_{p}} \mathrm{~d} \alpha \mathrm{~d} \beta \chi(-\beta Q-\alpha \beta \tau) \phi(Q+\alpha) \mathcal{F} U(\beta, \alpha) \tag{20}
\end{equation*}
$$

where the Fourier transform of the symbol of the commutator is

$$
\begin{align*}
\mathcal{F} U(\beta, \alpha)= & \int_{Q_{r} \times Q_{r}} \mathrm{~d} \mu \mathrm{~d} v \tilde{f}(\mu, v) \tilde{g}(\beta-\mu, \alpha-v) \\
& \times \chi(-2 \tau \mu v+\tau \mu \alpha+\tau \beta \nu+\mu \nu)[\chi(-\mu \alpha)-\chi(-\nu \beta)] \tag{21}
\end{align*}
$$

Finally, by using the inverse Fourier-transform formula, one gets the following theorem providing the expression for the commutator symbol.

Theorem 3.2. The symbol of commutator $[\hat{g}, \hat{f}]$ is

$$
\begin{align*}
U(Q, P)= & \int_{Q_{r}^{4}} \mathrm{~d} \alpha \mathrm{~d} \beta \mathrm{~d} \alpha^{\prime} \mathrm{d} \beta^{\prime} \tilde{f}(\alpha, \beta) \tilde{g}\left(\alpha^{\prime}, \beta^{\prime}\right) \\
& \quad \times \chi\left(\tau \alpha \beta^{\prime}+\tau \beta \alpha^{\prime}\right) \chi\left(-P\left(\beta+\beta^{\prime}\right)-Q\left(\alpha+\alpha^{\prime}\right)\right)\left[\chi\left(-\beta^{\prime} \alpha\right)-\chi\left(-\alpha^{\prime} \beta\right)\right] . \tag{22}
\end{align*}
$$

The next section will be devoted to the study of a possible generalization of Poisson brackets.

4. On the definition of the Poisson brackets

Consider a map f in $\mathcal{D}\left(Q_{p}^{2}\right)$ and write its inverse Fourier formula as

$$
\begin{equation*}
f(Q, P)=\int_{Q_{r} \times Q_{r}} \mathrm{~d} \alpha \mathrm{~d} \beta \tilde{f}(\alpha, \beta) \chi(-Q \alpha) \chi(P \beta) \tag{23}
\end{equation*}
$$

Let us try to introduce a derivative map for functions in $\mathcal{D}\left(Q_{p}^{2}\right)$.

Definition 4.1. Let h be a map in $\mathcal{D}\left(Q_{p}\right)$. For any bounded map $a: Q_{p} \rightarrow C$, the a derivative of h with respect to its variable x is defined as

$$
\begin{equation*}
\left(\frac{\partial h}{\partial x}\right)_{a} \equiv \int_{Q_{r}} \mathrm{~d} \alpha a(\alpha) \tilde{h}(\alpha) \chi(-x \alpha) \tag{24}
\end{equation*}
$$

We remark that, by setting $a(x)=|x|_{p}$, we get the definition given by Vladimirov in [14] of the differential operator D.

If we consider an infinite-component functional vector $\boldsymbol{A}=\left(a_{1}, a_{2}, \ldots\right)$, where the maps $a_{i}: Q_{j} \rightarrow C$ are bounded, we can generalize this formula to the gradient case

$$
\begin{equation*}
\left(\frac{\partial h}{\partial x}\right)_{A} \equiv\left(\frac{\partial h}{\partial x}\right)_{a_{r}}=\int_{Q_{r}} \mathrm{~d} \alpha a_{i}(\alpha) \tilde{h}(\alpha) \chi(-x \alpha) \tag{25}
\end{equation*}
$$

The relevant case is obtained with the choice $A(\alpha)=\left\{\alpha_{1}, \alpha_{2}, \ldots\right\}$, in which case we have

$$
\begin{equation*}
\left(\frac{\partial h}{\partial x}\right) \equiv \int_{Q_{r}} \mathrm{~d} \alpha\left(\alpha_{i}\right) \tilde{h}(\alpha) \chi(-x \alpha) \tag{26}
\end{equation*}
$$

Now we consider two maps g, f in $\mathcal{D}\left(Q_{p}^{2}\right)$ and compute

$$
\begin{gather*}
\left(\frac{\partial g}{\partial Q}\right) \circ\left(\frac{\partial f}{\partial P}\right)-\left(\frac{\partial f}{\partial Q}\right) \circ\left(\frac{\partial g}{\partial P}\right)=\int_{Q_{p}^{\prime}} \mathrm{d} \alpha \mathrm{~d} \beta \mathrm{~d} \alpha^{\prime} \mathrm{d} \beta^{\prime} \tilde{f}(\alpha, \beta) \tilde{g}\left(\alpha^{\prime}, \beta^{\prime}\right) \\
\times \chi\left(-Q\left(\alpha+\alpha^{\prime}\right)-P\left(\beta+\beta^{\prime}\right)\right)\left(\left(\alpha_{\mathrm{t}}^{\prime}\right) \circ\left(\beta_{i}\right)-\left(\alpha_{i}\right) \circ\left(\beta_{i}^{\prime}\right)\right) \tag{27}
\end{gather*}
$$

where o denotes some map from $Q_{p} \times Q_{p} \rightarrow Q$ which has still to be determined.

5. The asymptotic expansion of the quantum commutator in $1 / p$

In this section we try to state a correspondence principle and at the same time evaluate the exact value of the Poisson-bracket expression. In other words, we shall determine the forms of the maps A and o of the previous section.

Our idea is as follows. From a physical point of view, p-adic field theories could be useful for describing quantum phenomena at the order of scale of the Planck length l_{h} (see [17] for a discussion). Indeed, the non-Archimedean structure of spacetime is connected with the non-localization of the gravitation measurement.

When the scale order of the phenomena is l_{h}, we think that p-adic numbers absolutely have to be used; on the other hand, for very large scale order, real numbers can be used. So we suspect that the deformation parameter in this theory is $1 / p$ which has to be identified essentially with l_{h}.

Now we shall show that the commutator limit $l_{h} \rightarrow 0$ is the Poisson bracket by proving that the most relevant part of the expansion of the quantum commutator with respect to the deformation parameter $1 / p$ is a possible definition of the Poisson bracket when the maps A and \circ are suitably chosen.

Consider now the term

$$
\begin{equation*}
\chi\left(\tau \alpha \beta^{\prime}+\tau \beta \alpha^{\prime}\right)\left[\chi\left(-\alpha \beta^{\prime}\right)-\chi\left(-\alpha^{\prime} \beta\right)\right] \tag{28}
\end{equation*}
$$

in equation (22), assume for simplicity that $\tau=0$ and expand this term with respect to $1 / p$. To this end we notice that, for every p-adic γ, by writing $\gamma=\sum_{-s}^{\infty} \gamma_{i} p^{i}$ (for some s) we have $\{\gamma\}=\sum_{-s}^{-1} \gamma_{1} p^{i}$ and, therefore,

$$
\begin{equation*}
\{\gamma\}=\frac{1}{p} \gamma_{-1}+\frac{1}{p^{2}}(\ldots) \tag{29}
\end{equation*}
$$

Now we calculate, for large p,

$$
\begin{equation*}
\chi\left(-\alpha \beta^{\prime}\right)=\exp \left(2 \pi \mathrm{i}\left\{-\alpha \beta^{\prime}\right\}\right)=1+2 \pi \mathrm{i} / p\left(-\alpha \beta^{\prime}\right)_{-1}+\cdots \tag{30}
\end{equation*}
$$

Now we write the first term in the expansion in $1 / p$ of the commutator symbol in the form ($\tau=0$)

$$
\begin{align*}
U^{(1)}(Q, P)= & 2 \pi \mathrm{i} / p \int_{Q_{p}^{4}} \mathrm{~d} \alpha \mathrm{~d} \beta \mathrm{~d} \alpha^{\prime} \mathrm{d} \beta^{\prime} \tilde{f}(\alpha, \beta) \tilde{g}\left(\alpha^{\prime}, \beta^{\prime}\right) \\
& \times \chi\left(-P\left(\beta+\beta^{\prime}\right)-Q\left(\alpha+\alpha^{\prime}\right)\right)\left[\left(-\alpha \beta^{\prime}\right)_{-1}-\left(-\alpha^{\prime} \beta\right)_{-1}\right] \tag{31}
\end{align*}
$$

Now let us return to the Poisson-bracket definition. We fix the definition of the o map as follows. For any couple of members $u, v \in Q_{p}$, we set $u \circ v=-(u v)_{-1}$. In our specific case, we define

$$
\begin{equation*}
A(\alpha) \circ B(\beta) \equiv-(-\alpha \beta)_{-1} \tag{32}
\end{equation*}
$$

Now we consider Poisson brackets.
Definition 5.1. Let f, g be two maps of $\mathcal{D}\left(Q_{p}^{2}\right)$. The Poisson bracket is defined as follows:

$$
\begin{equation*}
\{g, f\}(Q, P)=\left(\frac{\partial g}{\partial Q}\right) \circ\left(\frac{\partial f}{\partial P}\right)-\left(\frac{\partial f}{\partial Q}\right) \circ\left(\frac{\partial g}{\partial P}\right) \tag{33}
\end{equation*}
$$

This definition can also be written in the form

$$
\begin{align*}
\{g, f\}(Q, P)= & \int_{Q_{p}^{\prime}} \mathrm{d} \alpha \mathrm{~d} \beta \mathrm{~d} \alpha^{\prime} \mathrm{d} \beta^{\prime} \tilde{f}(\alpha, \beta) \tilde{g}\left(\alpha^{\prime}, \beta^{\prime}\right) \\
& \times \chi\left(-Q\left(\alpha+\alpha^{\prime}\right)-P\left(\beta+\beta^{\prime}\right)\right)\left[\left(-\alpha \beta^{\prime}\right)_{-1}-\left(-\alpha^{\prime} \beta\right)_{-1}\right] \tag{34}
\end{align*}
$$

Now we look at the expression for the symbol of the operator $[\hat{g}, \hat{f}]$ in the $\hat{Q} \hat{P}$ quantization scheme. In so doing, we realize that the following expression holds:

$$
\begin{equation*}
U=\operatorname{Symb}[\hat{g}, \hat{f}]=2 \pi \mathrm{i} / p\{g, f\}+o\left(1 / p^{2}\right) \tag{35}
\end{equation*}
$$

which is the promised analogue of the deformation of law (1).
We have therefore proved our main result:
Theorem 5.1. The first term of the expansion in $1 / p$ of the symbol of the quantum commutator (for the $\hat{Q} \hat{P}$ quantization scheme) is the Poisson bracket of the previous definition

$$
\begin{equation*}
(\operatorname{Symb}[\hat{g}, \hat{f}])^{(1)}=2 \pi \mathrm{i} / p\{g, f\} \tag{36}
\end{equation*}
$$

This theorem furnishes us with the classical limit of p-adic quantum mechanics and can also be interpreted as a suggestion for linking the parameter p of Q_{p} to some scale factor like l_{h}.

References

[1] Beltramett1 E and Cassinelli G 1972 Found. Phys. 216
[2] Volovich I V 1987 Class. Quantum Grav. 4 L83
[3] Grossman B 1987 Phys. Lett. 197B 101
[4] Freund P G O and Olson M 1987 Phys. Lett. 199B 186
[5] Olson M, Freund P G O and Witten E 1987 Phys. Lett. 199B 91
[6] Volovich I V 1988 Lett. Math. Phys. 1661
[7] Frampton P H and Okada Y 1988 Phys. Rev. Lett. 60484
[8] Vladimirov V S and Volovich I V 1989 Commun. Math. Phys. 123659
[9] Vladimirov V S and Volovich I V 1989 Lett. Math. Phys. 1843
[10] Volovich I V, Vladimirov V S and Zelenov E 11990 Math. USSR Izv. 54275
[11] Khrennikov A Yu 1990 Russian Math. Survey 4587
[12] Kbrennikov A Yu 1991 J. Math. Phys. 32932
[13] Mahler K 1973 Introduction to p-adic Numbers and Their Functions (Cambridge: Cambridge University Press)
[14] Vladimirov V S 1994 Leningrad Math. J. 21261
[15] Cianci R and Khrennikov A 1993 J. Math. Phys. 341995
[16] Graev M I, Gelfand I M and Pyatetskii-Shapiro I I 1990 Representation Theory and Automorphic Functions (New York: Academic)
[17] Volovich I V, Vladimirov V S and Zelenov E I 1992 p-adic Numbers in Mathematical Physics (Singapore: World Scientific)

[^0]: * This work was carried out under the auspices of the GNFM of CNR of the research programme 'Metodi geometrici in Relatività e Teoria dei campi' of MURST and of the Russian Fundamental Foundation project no 93-011-16114.

